
J. Fluid Mech. (2008), vol. 599, pp. 111–120. c© 2008 Cambridge University Press

doi:10.1017/S0022112008000177 Printed in the United Kingdom

111

Spatially distributed control for optimal
drag reduction of the flow past a circular cylinder

PHILIPPE PONCET1,2, ROLAND HILDEBRAND3,
GEORGES-HENRI COTTET3

AND PETROS KOUMOUTSAKOS4
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We report high drag reduction in direct numerical simulations of controlled flows past
circular cylinders at Reynolds numbers of 300 and 1000. The flow is controlled by the
azimuthal component of the tangential velocity of the cylinder surface. Starting from
a spanwise-uniform velocity profile that leads to high drag reduction, the optimization
procedure identifies, for the same energy input, spanwise-varying velocity profiles that
lead to higher drag reduction. The three-dimensional variations of the velocity field,
corresponding to modes A and B of three-dimensional wake instabilities, are largely
responsible for this drag reduction. The spanwise wall velocity variations introduce
streamwise vortex braids in the wake that are responsible for reducing the drag
induced by the primary spanwise vortices shed by the cylinder. The results demonstrate
that extending two-dimensional controllers to three-dimensional flows is not optimal
as three-dimensional control strategies can lead efficiently to higher drag reduction.

1. Introduction
What is the maximum drag reduction that can be achieved in bluff body flows

for a given energy of the controller? Are two-dimensional control strategies sufficient
for drag reduction in three-dimensional flows? We address these questions via direct
numerical simulations (DNS) of flows past circular cylinders controlled by spatial
variations of the azimuthal component of the wall velocity.

Circular cylinders are widely considered as prototypical configurations for the study
of bluff body flows. Drag-inducing mechanisms of cylinder flows involve a nonlinear
interaction between the vortical structures in the wake and the generation of vorticity
on the cylinder surface. The three-dimensional instabilities of the wake (Barkley &
Henderson 1996; Williamson 1996) are related to mechanisms of drag production,
while modifications of the cylinder shape and its velocity can be optimized in order
to reduce the drag of the flow (Choi, Jeon & Kim 2008).

In this work we are interested in drag reduction induced by modifications of
the tangential component of the wall velocity. A uniform, albeit unsteady, velocity
on the cylinder surface has been shown to induce very high drag reduction in
experiments (Tokumaru & Dimotakis 1991) and simulations (Dennis, Nguyen &
Kocabiyik 2000; Poncet 2004) of cylinders undergoing rotary oscillations. Additional
controllers can be devised by modifying the wall velocity profile (Kim & Choi 2005;



112 P. Poncet, R. Hildebrand, G.-H. Cottet and P. Koumoutsakos

Milano & Koumoutsakos 2002). In Milano & Koumoutsakos (2002) two-dimensional
simulations were performed for flows past a circular cylinder controlled by azimuthal
variations of the tangential wall velocity. The optimal velocity profile was obtained
using an evolutionary optimization procedure leading to high drag reduction. This
velocity profile was then extended uniformly in the spanwise direction leading to
drag reduction for three-dimensional flows (Poncet, Cottet & Koumoutsakos 2005;
Poncet 2005). Hence one may conjecture that two-dimensional control strategies
obtained from relevant experiments and simulations would provide an efficient
method of identifying optimal wall velocity profiles that can then be extended to
the control of three-dimensional flows. Open issues include the robustness of the
velocity profiles with respect to three-dimensional perturbations as well as the extent
to which the efficiency of two-dimensional control strategies could be improved using
three-dimensional wall velocity profiles. There is mounting evidence (Lim & Lee
2004; Kim & Choi 2005; Dobre, Hangan & Vickery 2006) that three-dimensional
controllers may lead to enhanced drag reduction that is beyond what is possible by
two-dimensional controllers. This evidence complements the fact that, in uncontrolled
flows, three-dimensional instabilities in the cylinder wake are associated with drag
levels which are below those of the base two-dimensional flows.

In this paper we consider a systematic development of three-dimensional control
strategies for cylinder flows by varying the distributions of the azimuthal component
of the velocity on the cylinder surface. We start from an optimal spanwise-uniform
profile that has been obtained for two-dimensional cylinder wakes in Milano &
Koumoutsakos (2002). We then consider, for a given control energy, parametric
modulations of this profile along the spanwise direction. We identify, using a simple
design of experiments approach (Box & Wilson 1951), optimal parameters that result
in spanwise velocity variations leading to drag reduction that is over four times more
efficient than the initial two-dimensional control strategy. Though flow control using
spanwise variations of the wall velocity has been presented Kim & Choi (2005), the
control parameters in the present work differ in two respects. First, we consider tangen-
tial velocities instead of blowing–suction. Second, Kim & Choi (2005) considered large
wavelengths for the modulation of the cylinder. We use harmonic variations, instead
of subharmonics, of the cylinder span as for a given energy level this choice produces
higher levels of axial vorticity. The production of axial vorticity near the cylinder
surface plays an important role in drag reduction as is discussed in the next section.

2. Incompressible flows past circular cylinders
We consider the three-dimensional flow of an incompressible viscous fluid past a

circular cylinder at Reynolds numbers (Re =U∞D/ν) of 300 and 1000, where U∞, ν

denote respectively the free-stream velocity and the viscosity of the fluid and D =2R

denotes the diameter of the cylinder. A representative view of the cylinder wake
structures as obtained in experiments (Williamson 1996) and in DNS (Poncet 2004)
is depicted in figure 1.

2.1. Governing equations and numerical methods

We consider the incompressible Navier–Stokes equations in their vorticity–velocity
(ω−u) formulation:

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν�ω (2.1)

with ω = ∇ × u and ∇ · u = 0. These equations are complemented with the no-slip
boundary condition on the moving surface of the cylinder. Using a cylindrical
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Figure 1. Wake representations of the flow past a circular cylinder at Re= 300 as depicted
by dye visualizations in experiments Williamson (1996) (a), and by vorticity isosurfaces in
DNS Poncet (2004) (b).

coordinate system (er , eθ , ez) these boundary conditions are expressed as

ur=R = Ur (θ, z, t)er + Uθ (θ, z, t) eθ + Uz(θ, z, t)ez. (2.2)

In the present simulations the spanwise and normal wall velocity components are set
to zero. The flow is controlled by varying the steady azimuthal component of the wall
velocity (Uθ (θ, z)). Throughout this paper we consider a cylinder of radius 1. The com-
putational box is the cylindrical domain 1 � r � Rmax, 0 � θ � 2π, −L/2 � z � L/2, and
on the outer boundary (r =Rmax) we prescribe the normal velocity of the correspond-
ing potential flow and zero vorticity. Time is non-dimensionalized by the factor U∞/R.

The equations are discretized using a vortex method, see Cottet & Koumoutsakos
(2000); Ould-Sahili, Cottet & El Hamraoui (2000); Cottet & Poncet (2003); Poncet
(2004); Koumoutsakos (2005), summarized as follows:

(i) The vorticity field is discretized on particles: ω(x, t) =
∑

p ωpδ(x − xp(t)).
(ii) The particles xp are convected with the flow velocity:

dxp/dt = u(xp, t), dωp/dt = [∇u(xp, t)]T ωp.

A second-order Runge–Kutta scheme is used to integrate the equations of motion.
(iii) At each time step, particles are remeshed onto a cylindrical grid. On this grid

the velocity field is evaluated using a second-order, FFT-based, Poisson solver and
the particle strength is modified to account for vortex stretching and diffusion.

(iv) The wall boundary conditions are translated into vorticity flux that is
distributed to particles in the neighbourhood of the cylinder (see for instance Poncet
2007; Koumoutsakos, Leonard & Pepin 1994; Cottet & Poncet 2003).
The Lagrangian treatment of the vorticity advection method allows the use of com-
paratively small computational domains and large time steps without compromising
either the stability or the accuracy of the method in the presence of strong variations
in the boundary conditions. In the optimization runs, the cylindrical (r, θ, z) compu-
tational domain was extended to Rmax = 1 + 4π, L = πD. For Re = 300, the resolution
was set to 256 × 128 × 64 grid points. For Re = 1000, the resolution was doubled in all
directions, with a time step δt = 0.0625. In the simulations, after the control velocity is
turned on, the flow is computed for 100 time units with the flow settling to its steady
state after 60 time units. Simulations of 100 time units require approximately 17hours
of CPU time on an Itanium 2 processor. Verification simulations were performed in a
computational domain with sizes doubled in both the spanwise and radial directions.
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Figure 2. Evolution of the drag coefficient for a three-dimensional cylinder wake at Re =300
(the dashed lines denote the reference values 1.374 and 1.262). The drag coefficient is initially
periodic corresponding to a two-dimensional flow, until three-dimensional instabilities become
the dominant feature, leading to a non-periodic signal and a lower drag value.

These simulations were used for the flow visualization and the analysis (figure 2) of
the optimal profiles.

2.2. Cylinder drag coefficient

The cylinder drag coefficient is computed by taking the time derivative of the linear
impulse of the vorticity field in the volume Ω surrounding the body:

CD = − 1

U 2
∞R

d

dt

∫
Ω

ω × x · ex dv (2.3)

where ex denotes the streamwise direction. The drag coefficient can be decomposed
into contributions from the wall shear stresses (CDF ) and the pressure gradient (CDP )
on the surface of the body, which can be expressed in terms of the wall vorticity and
the wall vorticity flux by:

CDF = − ν

U 2
∞RL

∫
∂Ω

ωz sin θ ds, CDP = − ν

U 2
∞RL

∫
∂Ω

r
∂ωz

∂r
sin θ ds.

The evolution of the drag coefficient follows closely the appearance of instabilities
in the wake. These instabilities are associated with a reduced drag of the three-
dimensional flow. The drag coefficient is initially periodic corresponding to a two-
dimensional flow, until three-dimensional instabilities become the dominant feature,
leading to a non-periodic signal and a lower drag value (figure 2).

The vortex method, described in the previous subsection, has been validated in
Poncet (2004) in simulations of three-dimensional flows of uncontrolled cylinder
wakes. The drag value of the uncontrolled flow at Re = 300 is 1.26, and results from
averaging the flow over 1200 time units. Note that this drag coefficient is within
the values of 1.32, 1.24, 1.26 reported respectively in simulations by Kim & Choi
(2005); Kravchenko, Moin & Shariff (1999); Mittal & Balachandar (1995) and the
1.22 reported in experiments (Wieselsberger 1922) for the same Re.

3. Drag optimization
The present optimization strategy uses as a starting point the optimized azimuthal

wall tangential velocity component, obtained in two-dimensional simulations using a
genetic algorithm in Milano & Koumoutsakos (2002). This two-dimensional profile
is uniformly extended in the spanwise direction of the cylinder and the optimization
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Figure 3. (a) Actuator configuration on the cylinder surface (from Milano & Koumoutsakos
2002) and (b) velocity profile fitting the best population obtained by the CGA.

procedure described below identifies optimal, three-dimensional, spanwise variations
for enhanced drag reduction.

3.1. Optimization of two-dimensional cylinder wakes

The starting point of the present optimization is the two-dimensional velocity profiles
obtained in Milano & Koumoutsakos (2002) using a clustering genetic algorithm
(CGA). In that work the cylinder surface is divided into 16 panels, each with a
steady tangential velocity that can have a value in [−1, 1]. The CGA operates on
these 16 parameters (see Milano & Koumoutsakos 2002 for details) to identify the
respective wall tangential velocities that minimize the drag coefficient. The results of
that study led to a drag reduction of 50%, albeit using an order of magnitude larger
energy than that reported in the present study. In addition the algorithm identified in
an automated fashion, that the drag reduction was largely attributed to the motion
of actuators 3–4 and 13–14 (figure 3), which contain the separation point of the
uncontrolled cylinder. The velocities of the 16 actuators are fitted by the following
bi-Gaussian function:

f (θ) = α
∑
j=1,2

(−1)j

σ
√

2π
exp

(
−(x + (−1)jm)2

2σ 2

)
(3.1)

with α = 0.3342, m =1.03 and σ =0.21. The arrangement of the belt actuators and
the resulting fitted function are shown in figure 3.

3.2. Optimization of spanwise distributed controllers

The three-dimensional control velocity profiles of the present optimization study are
spanwise modulations of the two-dimensional profile given by (3.1). The velocity
profile is parameterized in terms of harmonics of the cylinder span:

Uθ (θ, z) = U∞ f (θ)

(
c0 +

√
2

n∑
k=1

ak sin (2πkz/L) + bk cos (2πkz/L)

)
eθ (3.2)

where L = πD is the spanwise length of the cylinder and the harmonics have
wavelength λk =L/k. We have selected n= 4 resulting in nine parameters for the
optimization.

Our choice for the wavenumber range was motivated by Poncet (2005) who
considered single-mode modulations of the wall tangential velocity, and found that,
at Re =300, three-dimensional modulations are efficient for wavelengths up to 4.
Moreover, k = 3 corresponds to a modulation at the closest frequency to the natural
mode B instability, but it does not lead to reduced drag (except for high energy
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Mode coefficients c0 or (a2
k + b2

k)
1/2 CD

Span Case k = 0 k = 1 k = 2 k = 3 k = 4 Re = 300 Re = 103

I 0 0 0 0 0 1.26 0.99
L = πD II 0.316 0 0 0 0 1.143 0.93

III 0.22 0.139 0.015 0.011 0.178 0.862 0.65

Table 1. Averaged drag: no control (Case I), two-dimensional control (Case II), optimal
three-dimensional control (Case III).

control, Poncet 2005). On the other hand, k = 1 reinforces the mode A instability,
leading to a dramatic drop of the drag coefficient. This happens despite the flow being
at a Reynolds number above 250, for which mode A is no longer visible. This range
of wavenumbers is consistent with the wavelengths obtained by shape optimization
in Darekar & Sherwin (2001), in which the most efficient perturbations are associated
with modes k > π/5.6 � 0.56.

In the present optimization all parametric studies are performed at a constant energy
level. The non-dimensional kinetic energy involved in the control is determined as
(Poncet et al. 2005):

E∗
c =

1

4π

(
c2
0 +

∑
k

|ak|2 + |bk|2
) ∫ π

−π

f (θ)2 dθ.

The energy level of the present control strategy was adjusted to match the levels
reported in Kim & Choi (2005). The tangential profile of that blowing/suction used
in that work is not available and we assume that it had an energy content equivalent
to our function f . For a maximum blowing of 0.2 this gives an energy value of 0.1.
We thus set

c2
0 +

∑
k

|ak|2 + |bk|2 = 0.1.

The present optimization algorithm proceeds as follows: For each pair of wave-
numbers we perform 100 function evaluations on their respective plane. The energy
level E∗

c is kept constant by adjusting accordingly the value of the constant mode
amplitude c0. We examine all possible pairs of wavenumbers and identify for each
plane the point yielding the smallest drag coefficient. We then use these minima as
starting points for a local search based on the concept of design of experiments
(Box & Wilson 1951). A finite difference stencil is allocated around each point in
all parametric directions and a local gradient descent algorithm is performed. The
algorithm is found to converge after 4 to 5 iterations.

This optimization process for the flow past a circular cylinder at Re = 300, results
in a drag coefficient of CD = 0.862, corresponding to a drag reduction of about
33% (see table 1). This drag reduction is four times larger than that achieved
by the corresponding two-dimensional configuration. The present results compare
well with the 23% drag reduction reported in Kim & Choi (2005) for a maximum
blowing/suction ranging between 0.1 and 0.2. In the present optimal configuration, the
maximum tangential velocity was 0.09 for case II and 0.179 for case III, with a mean
velocity of 0.074. As we optimize for a given energy level, it is not possible to match
a prescribed maximum velocity. Note that in the present case the drag reduction level
scales with the energy input of the control, in contrast with the observation in Kim &
Choi (2005) that increasing the blowing/suction beyond 0.1 does not lead to further
drag reduction.
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Figure 4. Top views of isovorticity surfaces ‖ω‖R/U∞ = 0.3, doubled by periodicity in the
spanwise direction, for (a) the uncontrolled (case I), (b) two-dimensional control (case II) and
(c, d) three-dimensional control (case III) for Re = 300, (d) being an enlargement of (c).

4. Discussion
The results of the simulations for the uncontrolled wake (case I), the wake with two-

dimensional control (case II) and the wake with optimal three-dimensional control
parameters (case III) are listed in table 1. For Re = 1000 we used the optimal
parameters identified for Re = 300 and no further optimization was performed.

The drag reduction observed in the three-dimensional controlled flow is analysed
in terms of instantaneous vorticity isosurfaces for uncontrolled and controlled wakes
(figure 4). The effect of the two-dimensional control is to weaken the structures
of streamwise vorticity while the optimal three-dimensional control leads to the
introduction of streamwise vorticity in the wake that further weakens the strength
of the primary spanwise vortices. Furthermore, in the three-dimensional control, the
von Kármán streets are attached for longer to the cylinder surface thus delaying their
shedding in the wake. This delayed shedding is visible in the absence of oscillations in
the drag evolution for case III on figure 5. Zooming into the vorticity isosurface for
case III (figure 4) we observe that strong braids of streamwise vorticity act to attach
the primary vortices to the surface of the cylinder. The normal vorticity on the cylinder
is correlated with spanwise variations of the slip velocity for short wavelengths. This
result further justifies the choice for harmonic, rather than subharmonic control
parameters, that further enhance the natural cylinder wake instabilities.

We explored the validity of this mechanism for higher Reynolds number flows by
performing a DNS at Re =1000. We observe that the control parameters identified
for Re = 300 lead also to drag reduction for this higher Reynolds number. This drag
reduction is much more significant than that obtained by two-dimensional control (see
figure 5). On figure 6 we present contours of cross-section for the vorticity magnitude
averaged in the spanwise direction and the instantaneous vorticity isosurfaces. Both
two- and three-dimensional control clearly result in a strong reduction of the strength
of the vortices in the wake. The three-dimensional control, although it tends to
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Figure 7. Drag coefficient pressure part CDP vs. friction part CDF for (a) Re =300 and (b)
Re = 1000, for uncontrolled flow (- -), two-dimensional control (+) and three-dimensional
control (�).

reinforce three-dimensional instabilities, results in a smoother organization of the
near wake, with strong streamwise vortex braids that are attached to the body. An
inspection of the phase diagram of the friction and pressure drag (figure 7), shows that
for Re =300, two- and three-dimensional control lead to a systematic drop of pressure
drag and to an asymptotic state for which both friction and pressure are decreased. For
Re =1000, the two-dimensional control does not change these quantities significantly,
while the three-dimensional control acts mainly on the pressure drag.

As shown in table 1 the optimal configuration, modes 1 and 4, have coefficients that
are an order of magnitude larger than those for modes 2 and 3. Since these modes are
close to natural instability modes A and B (respectively of wavelength λ1/D � 4 and
λ4/D � 1) and as mode A is associated with a natural drag reduction at low Reynolds
numbers, we performed complementary simulations at Re = 300 with a cylinder span
of L = 4D, thus matching the wavelengths of modes A and B. Using the coefficients
of case I, which are probably not optimal for this span, we obtained a drag coefficient
of 0.90. We next performed a simulation keeping the same coefficient values for
k = 0, k = 1 and k = 4 and turning off modes 2 and 3. We obtained a similar drag
value of 0.88. These results confirm the importance of exciting modes A and B for
drag reduction. The present optimization process identified in an automated fashion
this physical property of the system and allocated the proper energy distribution
between these modes and the two-dimensional optimal profile to achieve maximal
drag reduction.

5. Conclusions
We have demonstrated that, for a prescribed energy level, an appropriate spanwise

distribution of tangential velocities can lead to significant drag reduction. The optimal
control parameters have been systematically identified for a low Reynolds number
flow, and shown to be also effective at moderate Reynolds numbers. The driving
mechanism is the generation of strong streamwise vortex braids that delay the shed-
ding and weaken the spanwise vorticity in the wake. The resulting optimal parameters
indicate that the three-dimensional disturbances, corresponding to modes A and B of
three-dimensional wake instabilities, are largely responsible for this drag reduction.
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